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The end-point distribution of self-avoiding walks on a 
crystal lattice 

J. L. MARTIN and NI. G. WATTS 
Department of Physics, King’s College, University of London, London, 
England 
M S .  received 30th Nocember 1970 

Abstract. A recursive relation connecting the numbers of self-avoiding walks 
on an arbitrary network with the numbers of certain related topologies is given, 
and is used to obtain exact end-point distributions of self-as-oiding walks on a 
variety of Bravais lattices in two and three dimensions, The growth (propor- 
tional to n y )  of the mean-square end-to-end distance of such walks of n steps is 
re-examined. We estimate (i) for the triangular lattice: y = 1.488 10.002;  
(ii) for the face-centred cubic lattice: y = 1.20 +0.01. The first estimate is 
lower than y = 1.5 conjectured by some workers in this field; however, there 
are differences in assumptions of how the mean-square end-to-end distance 
ought to depend on n. 

1. Introduction 
The behaviour of finite self-avoiding walks on a regular lattice has attracted 

attention for several years, originally because it was thought that such walks may 
provide a reasonable model for a chain polymer in dilute solution. Wall and Hiller 
(1954), Hermans (1957), Casassa (1960) or Stockmeyer (1960) may be consulted for 
general reviews. Alternatively Fisher and Hiley (1961) give a brief summary up to 
1960 and list other references. More recent papers include Domb (1963, 1969) and 
Domb et al. (1965). More recently the intrinsic combinatorial interest of the problem 
has attracted attention (see, for example, Hammersley 1957, Domb 1964, 1970, 
Domb and Hioe 1969a,b, Hiley and Sykes 1961, and Martin e t  al. 1967). In  
particular, on account of the fact that a walk is not permitted to visit the same lattice 
site more than once, the steps of the walk are correlated in an unobvious way. One 
of the more frequently discussed correlations is the distribution of the end-points of 
the n-step walks whose first point is at the origin: most of the work in this field has 
been numerical, and almost all the ‘analytic results’ are conjectures. 

In  this paper ( $ 2 )  vie derive recursive relations between the numbers of the 
self-avoiding walks of interest and the numbers of more complicated but less 
numerous auxiliary topologies. The prototype for such relations was given by 
Sykes (1961) and in a slightly different form by Fisher and Sykes (1959); the relations 
themselves have been known to us for some years. However, it is only recently that 
a rapid enough computer program has become available to provide the counts for the 
auxiliary topologies. Even so, the recurrence itself may contain thousands of terms, 
and the problem of managing it efficiently on a computer is not trivial. For example, 
it would not be easy to apply the method to a random network. However, the 
symmetries of the Bravais lattices result in a considerable simplification, and we have 
been able to obtain substantial new numerical results for the end-point distribution 
of ;iz-step self-avoiding walks. Since they are extensive, the distributions themselves 
are not given here; they are to be found in Watts (1971). The new second moments 
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of the distributions are listed in table 1 for the usual Bravais lattices, and the results 
for the triangular lattice contribute to a fresh examination of the mean-square end-to- 
end distance of the walks on the close-packed lattices. 

Square 

Table 1. New values for c,p, for a variety of Bravais lattices 

n cnpnf cn t  
19 2 23743 23436 3351 16620 
20 6 47029 14336 8976 97164 

Triangular 11 4847 03142 176 68938 
12 23478 61440 753 55206 
13 1 12365 80322 3207 34686 
14 5 32257 80532 1362791250 

Simple cubic 14 11 27437 96632 4468911678 
1 5  5 8  00522 60230 2 11751 46054 

Body-centred cubic 9 4788 31624 356 52680 
10 36053 80256 2362 91096 
11 2 67798 55704 15680 49560 
12 19 67227 17504 1 03686 69992 

t c n  = number of n-step self-avoiding walks, and p n  = mean square end-to-end distance 
of n-step self-avoiding walks. The already known values for c ,  are also reproduced, 

We have seen work by other authors (Hioe 1970, Chay 1971) concerned with 
recurrence relations similar to those of this paper. Their ‘counting theorems’ are 
couched in the language of generating functions, and though the basic concepts are 
similar in outline, the details are not appropriate to the analysis carried out here. 

2. The recurrence relations 

the structure of which may be specified by the adjacency matrix 77 defined by 
The  problem is the following. We are given a network of points linked by bonds, 

if points A and B are linked by a bond; 
, otherwise. 

An n-step self-avoiding ualk on the network is a continuous sequence of n bonds 
visiting exactly n + 1 distinct points, including the starting and ending points. The  
aim is to develop practicable methods of enumerating the n-step self-avoiding walks 
on the network. 

One of the most rewarding techniques is based on noticing that the addition of a 
new bond to the end of a self-avoiding walk is normally more likely to result in a 
new self-avoiding walk than anything else; it therefore pays to count the failures, 
and to obtain the successes by using an appropriate recurrence relation. In  this 
technique, it is necessary to classify the walks according to their behaviour near their 
ends; we therefore introduce the notation, 

c,(AB ... D, X... 2) 

to denote the number of  n-step self-avoiding walks which begin by visiting 
the sequence of points AB ... D, and end by visiting the sequence X .. . 2. (We shall say 
that these walks go from AB ... D to X... 2.) 
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The first recurrence relation is obtained by observing that, if q ( X Y )  = 1, every 
n-step walk from A B  to XI’may be obtained by adding the bond X Y  to an (n-1) step 
walk from A B  to X .  We therefore consider what happens when we add the bond X Y 
to  each of the c,-,(AB, X )  walks from A B  to X ;  as well as every one of the n-step 
walks from A B  to X Y  we are likely to generate failures of three distinct types: 

C , - ~ ( A B ,  X )  = c,(AB, X Y )  
+C,-~(AB,  Y X )  

+ SAyu,(AB, X A )  

( X U  is an immediate reversal of the previous 

(if Y is the same point as A, we obtain a loop 
from A B  to X A :  the number of these is 

+&(AB, X U )  (if Y is any other previous point of the 
walk, including B,  we obtain a tadpole 
from A B  to X U ;  number = t,(AB, X U ) ) .  

step) 

Un(AB, X A ) )  

Thus information about zi, and t, will yield c,, provided c , - ~  is known. 
A second relation may be obtained in a similar way. If +q(AB) = 1, every tadpole 

with n bonds from A B  to X Y  may be obtained either by adding the bond A B  to a 
tadpole with (n-  1) bonds from B to X Y  or, if B and Y coincide, by adding the 
bond A B  to a loop with (n -  1) bonds from B to X B .  Thus 

+ t ,  - ,(BA, X U )  ’ (if A B  is an immediate reversal) + S B Y U ,  - ,(BA, X B )  I 
+ SBYS,,u,-,(AB, A )  (if B = Y ,  and B A  falls along YX) 
+ e,(AB, X U )  (all other failures). (2) 

The  types of configuration which may appear in e,  are illustrated in figure 1. I t  
is important that they are far less numerous than the walks with the same number of 
bonds. 

The  relation which forms the basis of the numerical work of this paper is obtained 
by eliminating t,(AB, X U )  from (1) and (2); it is 

t , (AB,  X U )  - { c , - ~ ( B ,  X U )  + c,- 1(AB, X )  -c,- 1(AB, Y X )  - c,-,(BA, X U ) )  

+ { c , - ~ ( B ,  X)-Cn-*(B, YX)-c , - , (BA,  X)+c,-,(BA, Y X ) }  

= e,(AB, X U )  - SAyu,(AB, XA) +- SAxSByun-l(AB, A )  ( 3 )  

which is true for n > 3 ,  q(AB) = 1 = ?(XU) .  In  applying this recurrence, it is 
sufficient to know appropriate values of e,(AB, X U ) ,  since the terms in U ,  contribute 
only when at least two of the points A, B,  X and Y coincide, that is, only when 
c,(AB, X U )  is known to be zero anyway. 

The  relation ( 3 )  is the first in a hierarchy of such relations. The form of the left 
side takes full account of the prohibition of immediate reversals, while the right side 
represents the fact that there are other sequences of bonds which violate the self- 
avoidance requirement. Apart from complexity, there is no reason not to account for 
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other prohibitions (such as triangular loops) in the recurrence on the left rather than 
in the correction on the right; in this way the hierarchy is obtained. However, the 
relations soon become too unwieldy to be of practical use. 

A 

Y 

A 

Figure 1. The  types of configurations contributing to the values of c ,  U ,  t and e .  
Those which may be expected to appear when two of A, B, X and Y are equal 
are shown on the right. Only those marked (*) need to be known in applying the 

recurrence. 

The derivation of (3) is valid for any network whatever. For some networks it is 
possible to 'condense' the relation in a way described in the appendix. In  particular, 
if every point of the network has the same number U+ 1 of bonds incident on it, we 
may sum (3) with A, B, X and Y ranging over all points of the network to obtain 

c , -2~7c , -~  + o ~ c , - ~  = e,- u,+u,- 

a relation first obtained and used by Sykes (1961) for the enumeration of self-avoiding 
walks on crystal lattices. 

3. The computer program 
It is not feasible to apply the recurrence relation to any useful problem without 

the aid of a computer, since it is necessary to handle many thousands of terms. Even 
so, there are problems of computer storage and time ; special techniques are required, 
and what starts as a basically simple computation develops complex features which will 
not be discussed here. Therefore, though it would have been possible to write a 
program to apply the recurrence to a general network, we have thought it best to 
confine attention to the problem of the distribution of end-points of n-step self- 
avoiding walks on a selection of Bravais lattices. The extent of the new results may 
be inferred from table 1. 
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The evaluation of the starting values (c,) and right sides (e,) of the recurrence 
is done by a fast and efficient counting program which was developed for a very 
general type of topological enumeration: to count the number of distinct ways in 
which one given network may be embedded in another. This program is written in 
TBM 360 assembler language and is organized to guarantee that the counting speed 
is high; in the face-centred cubic lattice, for example, successful embeddings are 
counted at rates exceeding 106/minute. The program designed to execute the 
recurrence is written in FORTRAN, and includes the counting program as a subroutine. 

Usually, the best way to use the recurrence is to choose a starting value of n for 
which the c, are small enough to be evaluated directly, and to continue untiI the e, 
become prohibitively large. However, when the number of walks to be counted is 
small (as it is for end-points near the edge of the distribution) it is more economical 
to count the walks directly, and to make no use of the recurrence. 

4. Analysis of the results 
Suppose that cn(A) is the number of n-step self-avoiding walks from the origin 

to the point A on a regular lattice, and that r(A) is the Cartesian distance of A from 
the origin. An important quantity is the mean-square end-to-end distance of the n-step 
self-avoiding walks : 

(4) 
&4YP(A)C,(4 

Z:AC,(A) . P n  = 

There is good numerical evidence (see, for example, Domb 1963) that the dominant 
behaviour of p n  for large n is given by 

p n  - const x n’ (n large) 

where y depends only on the dimensionality of the lattice. Such a behaviour implies 

-- Pn+1 - 1+ J + o  8. 
P n  n 

Here we shall make a much stronger assumption that p n  + l / p n  may be expanded 
as a power series in n - l ;  this is to say that p n  may be regarded as a coefficient in a 
generating function whose singularities are ‘simple’ (in a sense which we shall not 
discuss here). Thus we shall write 

-- P n + l  

P n  n 

Under these circumstances, estimates for y are provided by the sequence 

(Even without our strong assumption, the sequence of y, will still converge to y, but 
not so rapidly.) 
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Table 2. Mean-square end-to-end length (p,) of n-step walks on the 
triangular lattice 

n 
7 
8 
9 

10 
11 
12 
13 
14 

P n  Yn 
14,2038857 
17.2421 898 1.48667 
20.4664849 1 e48792 
23,8664230 1 ~48597 
27.4325000 1,48746 
31.1 572559 1.48743 
35-0338794 1,48782 
39,0564443 

Estimates for y are provided by equation (6). 
(The end-point distributions for n = 11 to 14 
are new.) 

Table 3. Mean-square end-to-end length (p,) of n-step walks on the 
face-centred cubic lattice, with estimates for y 

n P n  Y n  
5 6,3972150 
6 7.949825 8 1*20574 
7 9.5559603 1 * 20407 
8 11.2091892 1,20264 
9 12*9045503 1.20131 

10 14.6380756 

The distributions up to n = 10 haire pre- 
riously been obtained by McKenzie (1967). 

Values of pn and yn are given in tables 2 and 3 for the triangular and face-centred 
cubic lattices. Based on these results, our estimates of y are 

y(triangu1ar): 1.488 5 0.002 

Y(fCC) : 1.20 & 0.01. 

The  sequences for the loose-packed lattices exhibit the usual oscillation, but are not 
inconsistent with the conjecture that the true values of y depend only on the dimen- 
sionality of the lattice. The  full analysis for these lattices has not been carried out. 

The estimate for the triangular lattice is distinctly lower than y = 1.5-proposed 
by Domb (1963) who, however, assumes a different dependence of p n  on n. This 
illustrates a difficulty which sometimes arises, that any extrapolation must be preceded 
by an assumption about the general behaviour of the extrapolate. Any such assumption 
may be supported by physical insight or by the numerical consistency of the extra- 
polation itself. In  the case of the triangular lattice, we find numerical consistency 
which encourages the assumption of (5). 
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Appendix 1 
In  certain circumstances, the recurrence relations may be condensed in a useful 

way. Suppose it is possible to parcel the points of the network in to sets 31, P, y,  ... 
such that for any two of the sets (possibly the same set), 

ya8 = the number of bonds from a fixed point A in M to the points of ,!3 is independent 

The trivial parcelling is always possible: each point of the network is placed in a 
parcel by itself. In  this case 7 becomes r(AB), the adjacency matrix of the network. 
Not every network admits other parcellings; see, for example, figure 2, 

of the choice of A in E .  

Figure 2. (a )  a network admitting a parcelling into 3 sets, a, ,!3 and y ;  (b)  a net- 
work admitting only the trivial parcelling. 

We define 

c,( ap, (7) = the number of n-step self-avoiding walks whose first two points are in 
M and ,8 respectively, and whose last two points are in 5 and '7 respec- 
tively 

with analogous definitions for U ,  and e,. By summing ( 3 )  over all A, B, X, I' in 
E ,  13, 5, 7 respectively, with ?(AB) = 1 = 7 ( X Y ) ,  it is straightforward to show that 

This recurrence is very similar to (3), and reduces to it for the trivial parcelling; 
for other parcellings it may be compact enough to be executed by hand, 

In  the special case of a network whose points all have the same degree, U +  1, all 
points may be placed in the same parcel x .  If we write C , ( M Z ,  E X )  = c, simply, and 

= o+l, we obtain 

cn - 2 0 c , - ~  - O ~ C , - ~  = e, - U ,  + u , - ~  

first found by Sykes (1961). 
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Appendix 2 
Complete tables of end-point distributions are too extensive to publish here ; 

hen-ever, they have been obtained by the following authors who produce tables 
unless otherwise stated. 

SQ N = 1 to 8 Orr (1947). 
1 to 12 
1 to 16 

17 & 18 

Martin (1962): no tables. 
O’Flaherty (1961) : no tables. 
Domb et al. (196.5) : 

no table for 17. 
1 to 20 Watts (1971). 

T N = 1 to 9 Martin (1962) : no tables. 
10 Hioe (1967): no table. 

1 to 14 Watts (1971). 

sc n;= 1 to 10 Martin (1962). 
11 to 13 Domb et al. (196.5) : 

no tables for 11 8i 12. 
1 to 15 Watts (1971). 

1 to 12 Watts (1971). 

1 to 10 McKenzie (1967). 

BCC N =  1 t o  8 Martin (1962). 

FCC N = 1 to 7 Martin (1962). 
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